
Betweenness Centrality
in Dynamic Graphs

Presenter: Nathan Bowness
Class: COMP 5704

Betweenness Centrality (BC)

2

c

e

d

a

b

BC for a node v Is the fraction of the shortest paths
between all pairs of nodes that pass-
through v [1]

BC of c > BC of b, d > BC of a, e

A node v

An edge e

Why Use Betweenness
Centrality?

• Social Networks

• Transportation Networks

• Road Networks

3

[2]

Calculating Betweenness
Centrality in Static Graphs

4

𝐵𝐶𝐺 𝑣 = ෍
𝑠,𝑡∈𝑉,
𝑠≠𝑡≠𝑣

𝜎𝑠𝑡 𝑣

𝜎𝑠𝑡
= ෍

𝑠,𝑡∈𝑉,
𝑠≠𝑡≠𝑣

𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑠 𝑡𝑜 𝑡 𝑡ℎ𝑎𝑡 𝑖𝑛𝑐𝑙𝑢𝑑𝑒 𝑣

𝑠ℎ𝑜𝑟𝑡𝑒𝑠𝑡 𝑝𝑎𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝑠 𝑡𝑜 𝑡

𝐵𝐶𝐺 𝑣 = ෍

𝑠𝜖𝑉,𝑠≠𝑣

𝛿𝑠• 𝑣

𝑤ℎ𝑒𝑟𝑒, 𝛿𝑠• 𝑣 = ෍

𝑣𝜖𝑃𝑠 𝑤

𝜎𝑠𝑣
𝜎𝑠𝑤

∙ 1 + 𝛿𝑠• 𝑤

Formula:

Brandes Algorithm:
• Use source dependencies to perform

calculation

o Breadth-first search (BFS)

o Reverse breadth-first search (R-BFS)

(1)

(2)

(3) [3]

source dependencies

Brandes’ Breadth-First
Search

5

1

109

6 7

3

8

4 5

2

1311 12

𝝈𝟏𝟐 = 𝟏
𝑷𝟏 𝟐 = 𝟏

𝝈𝟏𝟑 = 𝟏
𝑷𝟏 𝟑 = 𝟏

𝝈𝒔𝒕 → # of shortest path from s to t

𝑷𝒔(𝒕) → parents of a node

s

6

Brandes’ BFS (Cont’d)

1

109

6 7

3

8

4 5

2

1311 12

𝜎12 = 1
𝑃1 2 = 1

𝜎13 = 1
𝑃1 3 = 1

𝝈𝟏𝟒 = 𝟏
𝑷𝟏 𝟒 = 𝟐

𝝈𝟏𝟓 = 𝟏
𝑷𝟏 𝟓 = 𝟐

𝝈𝟏𝟔 = 𝟏
𝑷𝟏 𝟔 = 𝟑

𝝈𝟏𝟕 = 𝟏
𝑷𝟏 𝟕 = 𝟑

s

7

Brandes’ BFS (Cont’d)

1

109

6 7

3

8

4 5

2

1311 12

𝜎12 = 1
𝑃1 2 = 1

𝜎13 = 1
𝑃1 3 = 1

𝜎14 = 1
𝑃1 4 = 2

𝜎15 = 1
𝑃1 5 = 2

𝝈𝟏𝟖 = 𝟐
𝑷𝟏 𝟖 = 𝟒, 𝟓

𝜎16 = 1
𝑃1 6 = 3

𝜎17 = 1
𝑃1 7 = 3

𝝈𝟏𝟗 = 𝟐
𝑷𝟏 𝟗 = 𝟔, 𝟕

𝝈𝟏,𝟏𝟎 = 𝟏

𝑷𝟏 𝟏𝟎 = 𝟕

s

8

Brandes’ BFS (Cont’d)

1

109

6 7

3

8

4 5

2

1311 12

𝜎12 = 1
𝑃1 2 = 1

𝜎13 = 1
𝑃1 3 = 1

𝜎14 = 1
𝑃1 4 = 2

𝜎15 = 1
𝑃1 5 = 2

𝜎18 = 2
𝑃1 8 = 4,5

𝜎16 = 1
𝑃1 6 = 3

𝜎17 = 1
𝑃1 7 = 3

𝜎19 = 2
𝑃1 9 = 6,7

𝝈𝟏,𝟏𝟐 = 𝟐

𝑷𝟏 𝟏𝟐 = 𝟗
𝝈𝟏,𝟏𝟏 = 𝟐

𝑷𝟏 𝟏𝟏 = 𝟗

𝝈𝟏,𝟏𝟑 = 𝟏

𝑷𝟏 𝟏𝟑 = 𝟏𝟎

𝜎1,10 = 1

𝑃1 10 = 7

s

Brandes’ Reverse Breadth-
First Search

9

1

109

6 7

3

8

4 5

2

1311 12

𝜎12 = 1
𝑃1 2 = 1

𝜎13 = 1
𝑃1 3 = 1

𝜎14 = 1
𝑃1 4 = 2

𝜎15 = 1
𝑃1 5 = 2

𝜎18 = 2
𝑃1 8 = 4,5

𝜎16 = 1
𝑃1 6 = 3

𝜎17 = 1
𝑃1 7 = 3

𝜎19 = 2
𝑃1 9 = 6,7

𝜎1,12 = 2

𝑃1 12 = 9
𝜎1,11 = 2

𝑃1 11 = 9

𝜎1,13 = 1

𝑃1 13 = 10

𝜎1,10 = 1

𝑃1 10 = 7

𝜹𝟏• 𝟏𝟏 = 𝟎 𝜹𝟏• 𝟏𝟐 = 𝟎

𝜹𝟏• 𝟏𝟑 = 𝟎

𝛿1• 5 =

𝛿𝑠• 𝑣 = ෍

𝑣𝜖𝑃𝑠 𝑤

𝜎𝑠𝑣
𝜎𝑠𝑤

∙ 1 + 𝛿𝑠• 𝑤

s

10

Brandes’ R-BFS (Cont’d)

𝜎1,13 = 1

𝑃1 13 = 10

1

109

6 7

3

8

4 5

2

1311 12

𝜎12 = 1
𝑃1 2 = 1

𝜎13 = 1
𝑃1 3 = 1

𝜎14 = 1
𝑃1 4 = 2

𝜎15 = 1
𝑃1 5 = 2

𝜎18 = 2
𝑃1 8 = 4,5

𝜎16 = 1
𝑃1 6 = 3

𝜎17 = 1
𝑃1 7 = 3

𝜎19 = 2
𝑃1 9 = 6,7

𝜎1,12 = 2

𝑃1 12 = 9
𝜎1,11 = 2

𝑃1 11 = 9

𝜎1,13 = 1

𝑃1 13 = 10

𝜎1,10 = 1

𝑃1 10 = 7

𝛿1• 11 = 0 𝛿1• 12 = 0

𝛿1• 13 = 0

𝜹𝟏• 𝟖 = 𝟎

𝜹𝟏• 𝟏𝟎 = 𝟏
𝜹𝟏• 𝟗 = 𝟐

s

11

Brandes’ R-BFS (Cont’d)

𝜎1,13 = 1

𝑃1 13 = 10

1

109

6 7

3

8

4 5

2

1311 12

𝜎12 = 1
𝑃1 2 = 1

𝜎13 = 1
𝑃1 3 = 1

𝜎14 = 1
𝑃1 4 = 2

𝜎15 = 1
𝑃1 5 = 2

𝜎18 = 2
𝑃1 8 = 4,5

𝜎16 = 1
𝑃1 6 = 3

𝜎17 = 1
𝑃1 7 = 3

𝜎19 = 2
𝑃1 9 = 6,7

𝜎1,12 = 2

𝑃1 12 = 9
𝜎1,11 = 2

𝑃1 11 = 9

𝜎1,13 = 1

𝑃1 13 = 10

𝜎1,10 = 1

𝑃1 10 = 7

𝛿1• 11 = 0 𝛿1• 12 = 0

𝛿1• 13 = 0

𝛿1• 8 = 0

𝛿1• 10 = 1

𝜹𝟏• 𝟕 = 𝟑. 𝟓

𝛿1• 9 = 2

𝜹𝟏• 𝟓 = 𝟎.𝟓 𝜹𝟏• 𝟔 = 𝟏. 𝟓
𝜹𝟏• 𝟒 = 𝟎. 𝟓

s

12

Brandes’ R-BFS (Cont’d)

𝜎1,13 = 1

𝑃1 13 = 10

1

109

6 7

3

8

4 5

2

1311 12

𝜎12 = 1
𝑃1 2 = 1

𝜎13 = 1
𝑃1 3 = 1

𝜎14 = 1
𝑃1 4 = 2

𝜎15 = 1
𝑃1 5 = 2

𝜎18 = 2
𝑃1 8 = 4,5

𝜎16 = 1
𝑃1 6 = 3

𝜎17 = 1
𝑃1 7 = 3

𝜎19 = 2
𝑃1 9 = 6,7

𝜎1,12 = 2

𝑃1 12 = 9
𝜎1,11 = 2

𝑃1 11 = 9

𝜎1,13 = 1

𝑃1 13 = 10

𝜎1,10 = 1

𝑃1 10 = 7

𝛿1• 11 = 0 𝛿1• 12 = 0

𝛿1• 13 = 0

𝛿1• 8 = 0

𝛿1• 10 = 1

𝛿1• 7 = 3.5

𝛿1• 9 = 2

𝛿1• 5 = 𝛿1• 6 = 1.5

𝜹𝟏• 𝟑 = 7.0𝜹𝟏• 𝟐 = 𝟑

𝛿1• 4 =

𝐵𝐶𝐺 𝑣 = ෍

𝑠𝜖𝑉,𝑠≠𝑣

𝛿𝑠• 𝑣

s

13

Calculating Betweenness Centrality

𝐵𝑒𝑡𝑤𝑒𝑒𝑒𝑛𝑛𝑒𝑠𝑠 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑡𝑦 → 𝐵𝐶𝐺 𝑣 = ෍

𝑠𝜖𝑉,𝑠≠𝑣

𝛿𝑠• 𝑣

• Completed→ s = 1

• Remaining → s = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

• Once finished, we keep certain data to help out with dynamic

algorithms

o 𝜎𝑠𝑡

o PS

o SS

o DS

Betweenness Centrality
in Dynamic Graphs

• Social Networks

• Transportation Networks

• Road Networks

14

Networks are always changing

Calculating BC in
Dynamic Graphs - 2020

• Recent algorithm in 2020 → Batch iCentral by Shukla et Al. [4],[5]

• Key Concepts:

o Avoid BFS

o Recompute betweenness centrality after a batch of updates

o Leverage previous stored data from Brandes’

15

Avoid BFS → Biconnected Components (BCC)

• Biconnected Components are a “maximal

biconnected subgraph” [5]

• Connected only by articulation points

• Allow graph to be split into subsections

16

Articulation point

Updating Edges in Sequence
• Previous algorithms applied edges 1-by-1 for Dynamic Graphs

• Regular iCentral does this

17

Add

Edge

Find affected

BCC

Step 1. Step 2.

Recompute

Betweenness

Centrality

Step 3.

Updating Edges in Sequence
• Previous algorithms applied edges 1-by-1 for Dynamic Graphs

• Regular iCentral does this

18

Add

Edge

Find affected

BCC

Step 4. Step 5.

Recompute

Betweenness

Centrality

Step 6…. And so on

Updating Edges in Batches

• Newer algorithms apply all edges to start, then recompute BC

19

Add All

Edges

Find any

affected BCCs

Step 1. Step 2.

Recompute BC on

affected nodes

Step 3. Done.

• Few ways to parallelize

o On affected Biconnected Components

o On affected nodes

o (Rare) On Graphs

20

Parallelizing BC Calculation

Parallelizing BC Calculation

• Few ways to parallelize

o On affected Biconnected Components

o On affected nodes 

o (Rare) On Graphs

21

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑣, 𝑠 ≠ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑣, 𝑡

Node v is affected if:

sv t

22

Parallelizing BC: Example

1

109

6 7

3

8

4 5

2

1311 12
1415

16

• Add 7 edges to the graph

BCC1

23

Parallelizing BC: Example (Cont’d)

1

109

6 7

3

8

4 5

2

1311 12
1415

16

BCC2

• Identify affected Biconnected Components

BCC1

24

Parallelizing BC: Example (Cont’d)

1

8

4 5

2

1415

• Identify affected nodes for each BCC

1st

2nd

All affected!

25

Parallelizing BC: Example (Cont’d)
• Identify affected nodes for each BCC

1st

2nd

All affected!

1

109

6 7

3

1311 12 16

BCC2

26

Parallelizing BC: Example (Cont’d)

• Send groups of affected nodes to separate threads/machines

1st

2nd

1, 2, 4, 5 8, 14, 15

Arrays of source dependencies (𝛿𝑠•) values

27

Parallelizing BC: Example (Cont’d)

• Send groups of affected nodes to separate threads/machines

1st

2nd

1, 3, 6, 7, 9 10, 11, 12, 13, 16

Arrays of source dependencies (𝛿𝑠•) values

Parallel Performance
• Non-linear speed-up

• Better parallel performance on larger graphs – to be expected

28

1

2

3

4

5

6

7

1 10 20

S
p

e
e
d

-u
p

 (
S

p
)

Number of Processors (P)

Average Parallel Performance on Small Neworks

web-EPA

road-Euroroads

road-Minnesota

Bio-grid Mouse

1

2

3

4

5

6

7

8

9

10

1 10 20

S
p

e
e
d

-u
p

 (
S

p
)

Number of Processors (P)

Average Parallel Performance on Large Neworks

web-Stanford

web-NotreDame

Comparison of Results
• Batch-iCentral vastly out-performs regular iCentral

29

BS – Batch Size

0

10

20

30

40

50

60

70

web-EPA Road-Euroroad Road-Minnesota Bio-grid Mouse

S
p

e
e
d

-u
p

 (
S

p
)

Average Speed-up of Batch-iCentral on Small Networks

BS=25

BS=50

BS=100

0

2

4

6

8

10

12

14

16

18

20

web-Stanford web-NotreDame

S
p

e
e
d

-u
p

 (
S

p
)

Average Speed-up of Batch-iCentral on Large
Networks

BS=25

BS=50

BS=100

30

Thanks For Listening!
Any questions?

31

Question 1:

• What type of graph traversal is used when

calculating betweenness centrality?

32

Question 2:

• When recalculating BC in a dynamic graph, is it

more effective to process edges one-by-one or in

a batch?

33

Question 3:

• What is one section/element of the graph that

betweenness centrality can be parallelized on?

34

References:
• [1] L. C. Freeman, “A Set of Measures of Centrality Based on Betweenness,” Sociometry, vol. 40, no.

1, pp. 35–41, 1977, doi: 10.2307/3033543.

• [2] M. Grandjean, English: Graph representing the metadata of thousands of archive documents,

documenting the social network of hundreds of League of Nations personals. 2013.

• [3] U. Brandes, “A faster algorithm for betweenness centrality,” The Journal of Mathematical

Sociology, vol. 25, no. 2, pp. 163–177, Jun. 2001, doi: 10.1080/0022250X.2001.9990249.

• [4] K. Shukla, S. C. Regunta, S. H. Tondomker, and K. Kothapalli, “Efficient parallel algorithms for

betweenness- and closeness-centrality in dynamic graphs,” in Proceedings of the 34th ACM

International Conference on Supercomputing, New York, NY, USA, Jun. 2020, pp. 1–12, doi:

10.1145/3392717.3392743.

• [5] F. Jamour, S. Skiadopoulos, and P. Kalnis, “Parallel Algorithm for Incremental Betweenness

Centrality on Large Graphs,” IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 3,

pp. 659–672, Mar. 2018, doi: 10.1109/TPDS.2017.2763951.

