2t Carleton

¥ UNIVERSITY

Betweenness Centrality
in Dynamic Graphs

Class: COMP 5704
Presenter: Nathan Bowness

An edge e

p Betweenness Centrality (BC)

A node v

BC for a node v Is the fraction of the shortest paths

between all pairs of nodes that pass-
through v [1]

BCofc>BCofbh,d>BCofa, e !

p Why Use Betweenness
Centrality? A

2]

- Social Networks

Transportation Networks

- Road Networks

> Calculating Betweenness
Centrality in Static Graphs

Formula: 0.t (V) # shortest paths from s to t that include v
BClvl =) = > (1)
Ot # shortest paths fromstot
S,tev, S,tev,
S#Et#V SFt+v
Brandes Algorithm.
. BClvl=) 6.(») (2
Use source dependencies to perform
. SeV,s+v
calculation
O Breadth-first search (BFS) Oy
O Reverse breadth-first search (R-BFS) where, 65, (V) = Z U_) (1 + 55°(W)) (3) [3]

Sw

x vePg(w)
source dependencies ﬂ

Brandes’ Breadth-Fi rSt Ot —> # of shortest path from sto t
P,(t) - parents of a node
) Search s

1
0'13=1

P,(3) = {1}

9

012 — 1
P,(2) ={1}

11 12

Brandes’ BFS (Cont’d)

1
g, =1 e = 1
P& =t P.(3) = {1}
2 3
Z N\ 716 = 1 <z N\e p(?77)=?3}
o124 =1 1 _
P1(11-4) = {2} & 5 P,(6) = {3} 6 7
9

11 12

Brandes’ BFS (Cont’d)

1
g, =1 e = 1
=t P(3) = (1)
3
it ey P -)
Py (4) = {2} 5 P, (6) = {3} 6 v
o =2 \ 01,10 =1
8 P1(9) = (6,7} 9 n - 1(10) = {7}
018 — 2
P,(8) = {4,5}

11 12

Brandes’ BFS (Cont’d)

1

012 =1 05 = 1

ale =0 P(3) = (1)
3
g4 =1 %16 i 1 P1€177) Z %3}
Pi(4) = {2} G 5 P, (6) = {3} (@ >
2 0110 =1
919 = P(10) = {7}
Org = 2 8 P1(9) = 16,7} ¢ 10 !
Pi(8) = {4,5} / \ \
0111 =2 ikl 0112 =2 U 13 o113 =1
P1(1111) = {9} P1(11122) = {9} P,(13) = {10}

y.

Brandes’ Reverse Breadth- «o- 3 22-aiaw)
P First Search s

1

012 = 1 013 =1

P (2) = {1} P, (3) = {1}
3
016 = 1 o7 =1
=1 = 16 ™ P1(7) = {3}
r— @ re-2) PO=CE 7
. 5 01,10 = 1
19 = P;(10) = {7
018 = 2 38 P;(9) ={6,7} 9 10 ! 73
P1(8) = {4,5}
01,13 = 1
o111 =2 (Ul o112 =2 (% ike)) P1(13) = {10}
P;(11) = {9} P1(12) = {9} 61.(13) =0

5;.(11) =0 §:.(12) =0

Brandes’ R-BFS (Cont’d)

0'12=1

P1(2) = {1}

0'14=1

P,(4) = {2} (&

O18 = 2 8
P,(8) = {4,5}

41.(8) =0

S
1
o13 =1
P1(3) = {1}
3
O1c = 1 017 =1
Pl(?) = (3} @2 . P,(7) = {3}
0110 =1
= P,(10) = (7)
P1(9) = {6 7} 9 10 81.(10) _ 1
51.(9) =2
’ \ \ g1,13 = 1
01,11 = 2 0112 =2 (2 =) P, (13) = {10}
P (11) = {9} P,(12) = {9} 5,.(13) = 0
5;.(11) =0 51.(12) = 0

Brandes’ R-BFS (Cont’d)

012 =1

P1(2) = {1}

014 =1 =
P,(4) = {2} 4 P (5) = {2}({%
5:.(4)=0.5 '
018 = 2
P1(8) = {4,5}

51.(8) =0

S
1
o3 =1
P1(3) = {1}
3
01 = 1 o1y =1
16 = P, (7) ={3
P.(6) = (3} (@ . 511(()7) 2{3}_ 5
61.(6) - 1 5 0_1 o= 1
o9 = 2 N P.(10) = {7}
P1(9) = 16,7} ¢ 10 5,.(10) = 1
51.(9) =2
0113 =1
o111 =2 (Ul o112 =2 (% (ke)) P1(13) = {10}
P;(11) = {9} P1(12) = {9} 5:.(13) =0
51.(11) =0 6:1.(12) =0

Brandes’ R-BFS (Cont’d)

o1, =1
P1(2) = {1}
01.(2) =3 (W

7z

N

014 =1 015 =1
P,(4) = {2} 4 P (5) = {2}({%
51.(4) =

018 = 2 8
P1(8) = {4,5}

51.(8) =0

BCilvl =) 8.()

SeV,s+v

S
1
o3 =1
P1(3) = {1}
£H) 6,.(3) =7.0
016 =1 o7 =1
16 = P,(7) = {3
P(®) = 3} (@ . ;1(. ()7) ! 3}.5
5,.(6) = 1.5 o1 =1
T19 = 2 P,(10) = {7)
P1(9) = {6,7} ¢ 10 5..(10) = 1
51.(9) =2
0113 =1
o111 =2 (Ul o112 =2 (% (ke)) P1(13) = {10}
P;(11) = {9} P1(12) = {9} 5:.(13) =0
51.(11) =0 6:1.(12) =0

Calculating Betweenness Centrality

Betweeenness Centrality — BCg[v] = Z d..(V)

SeV,s+v

* Completed > s=1
* Remaining>s=2,3,4,5,6,7,8,9,10, 11, 12, 13

* Once finished, we keep certain data to help out with dynamic
algorithms

o Ps

O S

) Betweenness Centrality
in Dynamic Graphs

—_

- Social Networks

- Transportation Networks __ Networks are always changing

- Road Networks

) Calculating BC in
Dynamic Graphs - 2020

e Recent algorithm in 2020 - Batch iCentral by Shukla et Al. [4],[5]
o Key Concepts:

o Avoid BFS

o Recompute betweenness centrality after a batch of updates

o Leverage previous stored data from Brandes’

) Avoid BFS = Biconnected Components (BCC)

Articulation point
e Biconnected Components are a “maximal

biconnected subgraph” [5] BCC,
e Connected only by articulation points

e Allow graph to be split into subsections

p Updating Edges in Sequence

e Previous algorithms applied edges 1-by-1 for Dynamic Graphs

e Regular iCentral does this

Step 1. Step 2. Step 3.

BCC, BCC, BCC,

Find affected Recompute
Add BCC Betweenness

Edge Centrality
— «o» o) - £»

p Updating Edges in Sequence
e Previous algorithms applied edges 1-by-1 for Dynamic Graphs

e Regular iCentral does this

Step 4. Step 5. Step 6.... And so on

BCC;,

Find affected Recompute
Add BCC Betweenness
Edge Centrality
—> — e —_>

p Updating Edges in Batches

» Newer algorithms apply all edges to start, then recompute BC

Step 1. Step 2. Step 3. Done.

BCC;,

Find any Recompute BC on
Add All affected BCCs affected nodes
Edges
—> — e —_>

p Parallelizing BC Calculation

Few ways to parallelize
o On affected Biconnected Components
o On affected nodes

o (Rare) On Graphs

p Parallelizing BC Calculation

Few ways to parallelize

©)

©)

©)

On affected Biconnected Components

On affected nodes €
(Rare) On Graphs

Node v is affected if:

distance(v,s) # distance(v, t)

O——le--

Parallelizing BC: Example
* Add 7 edges to the graph

Parallelizing BC: Example (Cont’d)

 ldentify affected Biconnected Components

BCC, BCC,

Parallelizing BC: Example (Cont’d)

 ldentify affected nodes for each BCC

1st 2
q All affected!
¢ o

BCC,

Parallelizing BC: Example (Cont’d)

 ldentify affected nodes for each BCC

2nd

e =l All affected!

Parallelizing BC: Example (Cont’d)

» Send groups of affected nodes to separate threads/machines

BCC,

— \ 1,2,4,5 \ 8,14,15}

/ \

[l [_]

A A

\ /

Arrays of source dependencies (4;.) values

A

Parallelizing BC: Example (Cont’d)

Send groups of affected nodes to separate threads/machines

136,79 10, 11, 12, 13, 16
—)- | | | |

/ \

[l [_]

A -

\ /

Arrays of source dependencies (d;.) values g

2nd

p Parallel Performance

Non-linear speed-up

Better parallel performance on larger graphs —to be expected

Speed-up (Sp)
D

Average Parallel Performance on Small Neworks

=\ yeb-EPA
road-Euroroads
road-Minnesota

= Bjo-grid Mouse

10 20
Number of Processors (P)

10

Speed-up (Sp)

Average Parallel Performance on Large Neworks

e \\eb-Stanford

e—\\eb-NotreDame

10 20
Number of Processors (P)

A

p Comparison of Results

- Batch-iCentral vastly out-performs regular iCentral

BS — Batch Size

Speed-up (Sp)

70

60

a1
o

N
o

w
o

20

10

0

Average Speed-up of Batch-iCentral on Small Networks

mBS=25
mBS=50
mBS=100 |
web-EPA Road-Euroroad Road-Minnesota Bio-grid Mouse

Speed-up (Sp)

20

18

16

[EEY
N

=
o

[ee]

]

N

N

//»

mBS=25
mBS=50
mBS=100

verage Speed-up of Batch-iCentral on Large
Networks

web-Stanford web-NotreDame

Thanks For Listening!
Any questions?

Question 1:

What type of graph traversal is used when
calculating betweenness centrality?

Question 2:

When recalculating BC in a dynamic graph, is it
more effective to process edges one-by-one or in
a batch?

Question 3:

What is one section/element of the graph that
betweenness centrality can be parallelized on?

References:

« [1] L. C. Freeman, “A Set of Measures of Centrality Based on Betweenness,” Sociometry, vol. 40, no.
1, pp. 35-41, 1977, doi: 10.2307/3033543.

* [2] M. Grandjean, English: Graph representing the metadata of thousands of archive documents,
documenting the social network of hundreds of League of Nations personals. 2013.

« [3] U. Brandes, “A faster algorithm for betweenness centrality,” The Journal of Mathematical
Sociology, vol. 25, no. 2, pp. 163-177, Jun. 2001, doi: 10.1080/0022250X.2001.9990249.

« [4] K. Shukla, S. C. Regunta, S. H. Tondomker, and K. Kothapalli, “Efficient parallel algorithms for
betweenness- and closeness-centrality in dynamic graphs,” in Proceedings of the 34th ACM
International Conference on Supercomputing, New York, NY, USA, Jun. 2020, pp. 1-12, doi:
10.1145/3392717.3392743.

« [5] F. Jamour, S. Skiadopoulos, and P. Kalnis, “Parallel Algorithm for Incremental Betweenness
Centrality on Large Graphs,” IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 3,
pp. 659-672, Mar. 2018, doi: 10.1109/TPDS.2017.2763951.

