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An edge e

p Betweenness Centrality (BC)

A node v

BC for a node v Is the fraction of the shortest paths

between all pairs of nodes that pass-
through v [1]
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p Why Use Betweenness
Centrality? A

2]

- Social Networks

Transportation Networks

- Road Networks




> Calculating Betweenness
Centrality in Static Graphs

Formula: 0.t (V) # shortest paths from s to t that include v
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Use source dependencies to perform
. SeV,s+v
calculation
O  Breadth-first search (BFS) Oy
O Reverse breadth-first search (R-BFS) where, 65, (V) = Z U_ ) (1 + 55°(W)) (3) [3]
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Brandes’ Breadth-Fi rSt Ot —> # of shortest path from sto t
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Brandes’ BFS (Cont’d)
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Brandes’ BFS (Cont’d)
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Brandes’ BFS (Cont’d)
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Brandes’ R-BFS (Cont’d)
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Brandes’ R-BFS (Cont’d)
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Brandes’ R-BFS (Cont’d)
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Calculating Betweenness Centrality

Betweeenness Centrality — BCg[v] = Z d..(V)

SeV,s+v

* Completed > s=1
* Remaining>s=2,3,4,5,6,7,8,9,10, 11, 12, 13

* Once finished, we keep certain data to help out with dynamic
algorithms
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) Betweenness Centrality
in Dynamic Graphs

—_

- Social Networks

- Transportation Networks __ Networks are always changing

- Road Networks




) Calculating BC in
Dynamic Graphs - 2020

e Recent algorithm in 2020 - Batch iCentral by Shukla et Al. [4],[5]
o Key Concepts:

o Avoid BFS

o Recompute betweenness centrality after a batch of updates

o Leverage previous stored data from Brandes’




) Avoid BFS = Biconnected Components (BCC)

Articulation point
e Biconnected Components are a “maximal

biconnected subgraph” [5] BCC,
e Connected only by articulation points

e Allow graph to be split into subsections




p Updating Edges in Sequence

e Previous algorithms applied edges 1-by-1 for Dynamic Graphs

e Regular iCentral does this

Step 1. Step 2. Step 3.

BCC, BCC, BCC,

Find affected Recompute
Add BCC Betweenness

Edge Centrality
— «o» o ) - £»




p Updating Edges in Sequence
e Previous algorithms applied edges 1-by-1 for Dynamic Graphs

e Regular iCentral does this

Step 4. Step 5. Step 6.... And so on

BCC;,

Find affected Recompute
Add BCC Betweenness
Edge Centrality
—> — e —_>




p Updating Edges in Batches

» Newer algorithms apply all edges to start, then recompute BC

Step 1. Step 2. Step 3. Done.

BCC;,

Find any Recompute BC on
Add All affected BCCs affected nodes
Edges
—> — e —_>




p Parallelizing BC Calculation

Few ways to parallelize
o  On affected Biconnected Components
o  On affected nodes

o (Rare) On Graphs




p Parallelizing BC Calculation

Few ways to parallelize

©)

©)

©)

On affected Biconnected Components

On affected nodes €
(Rare) On Graphs

Node v is affected if:

distance(v,s) # distance(v, t)

O——le--




Parallelizing BC: Example
* Add 7 edges to the graph




Parallelizing BC: Example (Cont’d)

 ldentify affected Biconnected Components

BCC, BCC,




Parallelizing BC: Example (Cont’d)

 ldentify affected nodes for each BCC

1st 2
q All affected!
¢ o

BCC,




Parallelizing BC: Example (Cont’d)

 ldentify affected nodes for each BCC

2nd

e =l All affected!




Parallelizing BC: Example (Cont’d)

» Send groups of affected nodes to separate threads/machines

BCC,
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Parallelizing BC: Example (Cont’d)

Send groups of affected nodes to separate threads/machines

136,79 10, 11, 12, 13, 16
—)- | | | |

/ \
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A -
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Arrays of source dependencies (d;.) values g

2nd




p Parallel Performance

Non-linear speed-up

Better parallel performance on larger graphs —to be expected

Speed-up (Sp)
D

Average Parallel Performance on Small Neworks

=\ yeb-EPA
road-Euroroads
road-Minnesota

= Bjo-grid Mouse

10 20
Number of Processors (P)

10

Speed-up (Sp)

Average Parallel Performance on Large Neworks

e \\eb-Stanford

e—\\eb-NotreDame

10 20
Number of Processors (P)

A



p Comparison of Results

- Batch-iCentral vastly out-performs regular iCentral

BS — Batch Size
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Thanks For Listening!
Any questions?




Question 1:

What type of graph traversal is used when
calculating betweenness centrality?




Question 2:

When recalculating BC in a dynamic graph, is it
more effective to process edges one-by-one or in
a batch?




Question 3:

What is one section/element of the graph that
betweenness centrality can be parallelized on?
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