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Abstract 

Dynamic graphs are an important tool to model constantly changing data for applications such as social 

networks, roads networks and biological networks. Finding correlations and relationships programmatically 

in these graphs is essential, as the amount of information has grown far beyond what humans can process 

manually. Betweenness centrality shows a user how influential a specific node is in connecting the other 

nodes around them. This paper implements Batch-iCENTRAL; a program based on a batch update algorithm 

proposed by Shukla et al. [5] that computes betweenness centrality on dynamic graphs. Batch-iCENTRAL 

is parallelizable on a graph’s affected nodes, resulting in improved performance on multi-threaded machines. 

The algorithm leverages graph theory to reduce the number of repeated breadth-first search and reverse 

breadth-first searches when a batch of edges are applied. After experimentation, it is determined that Batch-

iCENTRAL typically offers increased performance on batch sizes of 25 or more when compared to other 

non-batch algorithms.  

1. Introduction 

As the 21st Century progresses, humans are becoming more dependant on technology; whether that is a 

smart-phone, DNA sequencer, or even a bank machine, they all result in the creation of data. The mass 

abundance of data has led to tremendous research efforts into the fields of Data Science and Big Data. 

Through this research, it has become apparent that sequential computing is insufficient for performing 

computational tasks on massive data sets. As a result, parallel computing has been adopted to speed-up the 

computation process. Parallel computing allows programmers to push past the limitations of sequential 

computing, which are often restricted by hardware, by splitting sections of a large task into independent 

steps that can be executed simultaneously [1]. Parallel computing allows these independent steps to run on 

multiple processors at the same time. Once the individual steps are completed, the output can be interpreted 

by the main process which combines the different outputs, thereby defining a single solution to the large 

task. This parallelization will reduce the overall compute time for the task. Parallel computing cannot be 

used for all applications; particularly in applications that require steps to be completed in a specific 

sequence, but where it is applicable, users will see large gains in performance. 

Graphs have become instrumental in modelling relationships in applications such as biological, social, 

and transportation networks. The applications mentioned, and many others, encompass massive data sets 

that require parallel computing for graph analysis within a reasonable period. One core metric for graph 

analysis is to evaluate the centrality of all nodes. Depending on the information desired, centrality can be 

measured in multiple ways including degree-, closeness-, betweenness-, Eigenvector- centrality and many 

others, each offering a different view into the data [2]. In this paper, the focus will be solely on betweenness 

centrality (BC). BC for a node v in a graph G can be defined as “the fraction of the shortest paths between 

all pairs of nodes that pass through v” [3],[4]. Taking a social network as an example, BC values measure 
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how influential a person is in connecting the network around them; someone with a high value will have 

the most influence.  

There are many different algorithms for calculating BC, differing based on graph size and whether 

updates are expected. This paper’s focus will be directed towards recomputing centrality in dynamic graphs; 

graphs that change over time by removing or adding edges. These graphs are better representations of real-

world applications that are continuously changing. For example, in a transportation network, routes are 

constantly being added or removed. A social media network where people may be friending and unfriending 

multiple people every minute is another example. In these scenarios, algorithms are required to recompute 

existing values quickly, rather than recomputing all values again, thereby unnecessarily wasting time. The 

goal of this paper is to evaluate a cutting-edge parallel algorithm produced by Shukla et al. [5] for computing 

BC on dynamic graphs and evaluate its performance on additional datasets to verify the massive 

performance gain claimed. 

2. Literature Review 

Betweenness centrality can be computed using many algorithms. The “best” algorithm for a certain case 

generally depends on two factors: whether the graph is expected to change, and the size of it. Using these 

factors, the algorithms can be grouped into three main subsections: static graphs, massive graphs (100s of 

millions to billions of nodes/edges) and dynamic graphs. This paper will briefly touch on the first two 

sections with a focus on state-of-the-art algorithms for dynamic graphs.  

2.1 Betweenness Centrality in Static Graphs 

Computing the betweenness centrality for each node in a static graph is required as a preliminary step 

for most dynamic approaches. The dynamic algorithms leverage information such as all-pairs shortest paths 

and the number of shortest paths, both of which are stored during a preliminary run. This is done to speed 

up calculations for a future update. Algorithms for static graphs are often used for comparison to see how 

much a dynamic algorithm improves performance, rather than having to recompute the values for the entire 

graph again. The fastest known algorithm for computing betweenness centrality in a static graph was found 

by Brandes [6] and has a runtime of 𝜗(|𝑉||𝐸|). Recently, researchers have attempted to increase the 

performance of the Brandes algorithm, but they were shown to only improve in some situations, and 

theoretically, the algorithms do not offer any computation advantage [7], [8]. Additionally, there has been 

lots of work in computing BC for static graphs in parallel, this work is outlined in many papers including 

[9], [10], [11], [12]. These parallel algorithms offer a decrease in computational time, with a downside of 

requiring a large amount of memory, so as graphs grow, they surpass the memory requirements of some 

machines. This is why approximation algorithms are used for massive graphs, to bypass the required 

memory needed for exact computations.  
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2.2 Betweenness Centrality Approximation in Massive Graphs 

Calculating the exact betweenness centrality of a graph with hundreds-of-millions to billions of nodes 

and edges is slow and can be resource-intensive. To increase the speed of computation, users can sacrifice 

accuracy to get quick results using approximation algorithms. These are especially useful for applications 

where some chance of error is acceptable, but results are required quickly. Similarly, to calculating the 

exact betweenness, approximation research has been split into approximating static graphs and dynamic 

graphs. Approximating the betweenness centrality in static graphs has been researched in depth for social 

networks, some key papers include [13], [14]. More recent research has turned toward approximating the 

BC values in dynamic graphs [15], [16], [17]. Considering dynamic graphs, approximation gives a large 

speed up over exact calculations. To give an example, Hayashi et al. [16] mentioned their algorithm can 

“reflect a graph change in less than a millisecond on an average large-scale web graph with 106 [million] 

vertices and 3.7 [billion] edges”. To contrast, the exact algorithm by Shukla et al. [5] for a graph with 325 

thousand nodes and 1.082 million edges could process a batch update of 25 nodes in approximately 700 

seconds. 

2.3 Betweenness Centrality in Dynamic Graphs 

Recomputing betweenness centrality for each node in a dynamic graph is a common scenario when 

modelling real-world networks. Significant research has been conducted to improve processing speed, 

thereby reducing the space required to store graph information and parallelize the algorithms. Some key 

papers on the topic include [18], [19], [20], [21], [22]. Most notably, Jamour et al. introduced iCENTRAL 

[22], an algorithm that offers a large speed improvement without a large space requirement that is also 

parallelizable. iCENTRAL was based on a few key concepts to reduce run time: limiting breadth-first 

search (BFS), using biconnected components (BCC), as well as identifying redundant nodes. Shukla et al. 

[5] have improved on the iCENTRAL algorithm by introducing the concept of a batch update to address its 

main flaw of being limited to sequential updates.   

2.3.1 Calculating Betweenness Centrality for Dynamic Graphs 

Considering a Graph G defined with a set of edges E and nodes V, in general the betweenness centrality 

(BC) for a node v in a graph can be defined as [6]:  

 
𝐵𝐶𝐺[𝑣] = ∑

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡𝑠,𝑡∈𝑉,
𝑠≠𝑡≠𝑣 

= ∑
𝛿𝑠𝑡(𝑣)

𝛿𝑠𝑡𝑠,𝑡∈𝑉,
𝑠≠𝑡≠𝑣 

 
(1) 

Where: 
s, t  are also nodes in the graph G 

𝜎𝑠𝑡(𝑣)  is the number of shortest paths from s to t that pass through v 

𝜎𝑠𝑡  is the number of shortest paths from s to t   
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The ideal algorithm proposed by Brandes [6], which is leveraged by dynamic graphs algorithms, uses pair 

and source dependencies denoted by 𝛿𝑠𝑡(𝑣) and 𝛿𝑠•(𝑣) respectively to calculate the betweenness centrality. 

Pair and source dependencies are represented by equations (2) and (3) respectively, as follows: 

 
𝛿𝑠𝑡(𝑣) =  

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡

 (2) 𝛿𝑠•(𝑣) = ∑ 𝛿𝑠𝑡(𝑣)

𝑡𝜖𝑉,𝑡≠𝑣

 (3) 

  

The algorithm implements a BFS from node s to compute both 𝜎𝑠𝑤 and 𝑃𝑠(𝑤) for all nodes w∈V with s≠w. 

The second step uses a reverse-BFS to find the source dependencies, 𝛿𝑠•(𝑣), using Equation (4). 

  

 
𝛿𝑠•(𝑣) = ∑

𝜎𝑠𝑣

𝜎𝑠𝑤

∙ (1 + 𝛿𝑠•(𝑤))

𝑣𝜖𝑃𝑠(𝑤)

 (4) 

Where: 

𝜎𝑖𝑗 is the number of shortest paths from i to j 

𝑃𝑠(𝑤) is the list of parents of w in the BFS of s 

  

  

Brandes’ algorithm [6] allows for the computation of betweenness centrality by only performing a BFS 

and reverse-BFS. This combined with other techniques, offers a large speed improvement for dynamic 

graph algorithms. Brandes also keeps properties about the BFS traversal from each node so that the 

properties do not need to be re-computed from scratch each time. The information kept with regards to a 

source node, s, includes: Ss the order of nodes visited from the source node, Ds the distance from the source 

node, 𝜎𝑠 number of paths from s, and Ps the parent nodes of s. 

  

 
𝐵𝐶𝐺 [𝑣] = ∑ 𝛿𝑠•(𝑣)

𝑠𝜖𝑉,𝑠≠𝑣

 (5) 
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2.3.2 Biconnected Components 

Large graphs can be sectioned into their biconnected components. A BCC of a graph “is a maximal 

biconnected subgraph”[22]. The BBCs within a graph are only connected by articulation points – a node 

that would disconnect the graph if removed. The BBC sections allow for the graph to be logically split 

ensuring the following claims: a node can be a part of multiple BCCs, but an edge can only be part of one 

BCC. Figure 1 below shows a graph split into different BCCs and the articulation points connecting them. 

  

 Figure 1: Graph displaying different biconnected components (BCC), and articulation points e 

and h in orange. 

BCCs are a critical piece of dynamic BC algorithms as they limit the scope of the BFS required by the 

Brandes algorithm to re-compute BC. Jamour et al. [22] show that the BC can be computed completely 

within the BCC of the affected edge, thereby reducing the number of nodes the BFS must be run from 

drastically and offering a large speed improvement.  

 

2.3.3 Batch Update for Betweenness Centrality 

Previous approaches by [19], [22], [20], [23] to updating betweenness centrality were restricted to 

processing only one update at a time. The disadvantage to that approach is if multiple updates occur during 

a short period, there are consecutive updates to all nodes. As well, if multiple updates affect a single node 

v, recomputing the BC for each incremental update is wasteful. Equation (6) below shows the formula used 

by iCENTRAL [22] to update the BC by removing and adding source dependencies for each added or 

removed edge one by one. Further information about the iCENTRAL algorithm can be found in the 

Appendix. 

 𝐵𝐶𝐺′[𝑣] = 𝐵𝐶𝐺′[𝑣] − ∑ 𝛿𝑠•(𝑣)

𝑠𝜖𝑄,𝑠≠𝑣

+ ∑ 𝛿′𝑠•(𝑣)

𝑠𝜖𝑄,𝑠≠𝑣

 (6) 

Where: 

• BCG’   is the updated betweenness centrality value for a node v in Graph G 

• Q       is the set of all nodes for where 𝛿𝑠•(𝑣) has changed after the insertion of edge e 

 

Shukla et al. [5] improved upon iCENTRAL to allow for batch updates, circumventing the 

disadvantage of current approaches and improving performance dramatically. Shukla et al. propose 

removing all old source dependencies and then adding all new source dependencies for the entire batch of 

updated edges. Figure 2 below shows the improvements of calculating the betweenness centrality in a batch 

rather than sequentially for each edge. 
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Figure 2: Diagram taken from Shukla et al. [5] showing their batch update approach in blue, and 

comparing it to iCENTRAL’s [22] approach of sequential updates in black. 

3. Problem Statement 

The goal of this paper is to implement the batch update algorithm designed by Shukla et al. [5] and 

evaluate the parallel performance of their model on additional datasets. The original paper [5] only analyzed 

the algorithm’s performance with one configuration of 48 threads on a CPU. This paper looks to evaluate 

the algorithm’s performance under different processor configurations to give others more insight into how 

the algorithm parallelizes. In certain graph applications, it is reasonable to assume only a small number 

edge updates will ever occur. Thus, another goal is to evaluate if the batch update algorithm is always faster 

than iCENTRAL, or if there is additional overhead on small batch sizes. Finally, this paper will compare 

the batch update’s performance on different graphs, grouped by various traits, with a goal of defining which 

graph properties impact the performance.  

4. Parallel Batch-iCENTRAL 

This section covers the algorithm implemented by this project, Batch-iCENTRAL. Batch-iCENTRAL 

is based on Shukla et al.’s batch update model [5], with some additional modifications to reduce complexity. 

Batch-iCENTRAL does not use the concept of chains in a graph or remove redundant nodes from the BFS 

and reverse-BFS steps. Both techniques offer minimal speedup to the algorithm, so they have been 

disregarded for this implementation. Shukla et al. mention that each technique offers a speedup of around 

1.1 times for a batch size of 25 edges when compared to the original iCENTRAL. Since the batch update 

algorithm has a speedup of 3 to 15 times depending on the dataset, this is negligible. Batch-iCENTRAL 

can be used to update betweenness centrality on dynamic graphs, provided that Brandes-BFS [6] has been 

run on the original static graph beforehand. The algorithm leverages the properties stored during BFS and 

R-BFS that were discussed in Section 2.3.3, which include Ss, Ds, 𝜎𝑠 and Ps to increase speed. 

4.1 Batch Update for Betweenness Centrality 

The main method for Batch-iCENTRAL, seen below in Algorithm 1, requires a few input arguments: 

a graph G with set of edges E, vertices V, and Brandes-BFS data, as well as a batch of edges B, the existing 

betweenness centrality values of graph G and the operation to perform with the batch of edges. For the 

preliminary implementation, all edges are considered either inserted or deleted for the entire batch. On lines 

5-6, the algorithm looks for all biconnected components that have edges either inserted or deleted from 

them. If the operation is an insertion, the BCCs of G’ will be returned, whereas if the operation is a deletion, 

the BCCs of G will be returned. The reasoning for the difference is detailed in section 4.2. Once all affected 

BCCs are returned, all affected nodes within each BCC must be found. Affected nodes can be found by 

running a BFS from each side of a new edge and checking if the distances are equal. Any node u, is affected 

by an edge (v,w) if 𝑑(𝑢, 𝑣) ≠ 𝑑(𝑢, 𝑤).  
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After the affected nodes and BCCs have been found, lines 8-12 deal with removing the original source 

dependencies for the BC array. This section of the algorithm is equivalent to the − ∑ 𝛿𝑠•(𝑣)𝑠𝜖𝑄,𝑠≠𝑣  portion 

of Equation (6). Each of the affected nodes within a BCC of G are divided amongst the available machines 

or processors and AtomicICentral is run in parallel. When the operation is insertion, the BBCs being iterated 

through correspond to the graph G’. To ensure only source dependencies related to G are removed, any 

nodes that do not have previous Brandes-BFS properties are ignored during the subtraction steps. This 

ensures that all newly inserted edges are ignored.  

After the betweenness centrality array has had its old source dependencies removed, lines 14-20 deal 

with adding all new source dependencies to the array. This section is equivalent to the + ∑ 𝛿′𝑠•(𝑣)𝑠𝜖𝑄,𝑠≠𝑣  

portion of Equation (6). For this section, all affected nodes for a BCC of G’ are divided amongst processors 

to call AtomicICentral in parallel. Since the affected BCCs are supposed to correspond to G’, if the 

operation is deletion, all edges must be added to the BCC before running AtomicICentral. This ensures that 

the source dependencies are added from all affected nodes in G’ for both types of operations. 

4.2 Finding Affected Biconnected Components 

Finding the affected biconnected components of the graph is essential to the Batch-iCENTRAL 

algorithm. The affected BCCs are defined as any BCC (sub-section) of the graph that contains one of the 

modified edges. The array of BCCs returned by the algorithm either correspond to the BCCs from the 

original graph G, or the BCCs from the modified graph G’. If the operation is deletion, then the BCCs of 

the original graph G are returned. This covers any case where removing an edge would separate one 

biconnected component into two separate BCCs. However, the opposite is true if the operation is insertion. 

In this case, the affected BCCs of the modified graph G’ are returned. This supports cases where an inserted 

edge can combine two different biconnected components into one. Algorithm 2 below shows this logic in 

a more distinct manner and ensures that all affected BCCs are returned for the corresponding graph G or 

G’.  
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4.3 Atomic iCENTRAL 

Atomic iCENTRAL, seen in Algorithm 3 below, was taken directly from the pseudocode outline by 

Shukla et Al [5]. It leverages the theory proposed by Jamour et Al. to allow recomputing updated 

betweenness centrality values from within a BCC [22]. Based on that theory, the arguments for the 

algorithm do not include the entire graph. Instead, they are the node to traverse from, the biconnected 

component to traverse, the current BC array and lastly, the factor determining if it should subtract or add 

dependencies. Lines 5-17 of Algorithm 3 use a reverse BFS and theory proposed by Jamour et Al. [22] to 

update the BC by either adding or subtracting source dependencies atomically. If the factor is -1, the source 

dependencies are subtracted, and if the factor is 1, then source dependencies are added. All changes to the 

array storing BC values are atomic. This guarantees that no writes occur at the same time and ensures that 

correct values are calculated for BC.   
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5. Experimental Evaluation 

5.1 Experimental Setup 

All experiments were performed on a Linux Virtual Machine (VM) running Ubuntu 18.04, that was 

hosted on a computer running Windows. The Windows computer was using an Intel Xeon W-2175 CPU, 

that had 14 cores, 28 logical processors, all clocked at 2.50 GHz. The Linux VM itself was provided 96 GB 

of RAM and 20 processors. The VM’s performance when trying to allocate more than 20 processors was 

quite sluggish due to the Windows operating system requirements on the original computer. All algorithms 

were implemented in C++ 11 and all testing was done on a single machine by creating threads.  

Code for the original iCentral algorithm, designed by Jamour et al. [22], was available on GitHub [24]. 

For this project, some modifications were made to the original iCentral code to compare results with Batch-

iCentral. Brandes-BFS and the algorithms for finding BCCs were reused from the available code on GitHub 

[24]. 

 

 

 

 

 

 

 



 

10 
 

5.2 Datasets 

Table 1: The datasets used for performance testing of Batch-iCENTRAL. 

 
Graph Dataset |V| |E| 

Average 

Degree 
Source 

Web 

Networks 

web-NotreDame 3.25 x105 1.50 x106 9 [25] 

web-Stanford 2.82 x105 2.31 x106 16 [26] 

rec-Amazon 9.18 x104 1.26 x105 1 [27] 

soc-Epinions 2.66 x104 1.00 x105 7 [28] 

web-EPA 4.77 x103 9.00 x103 4 [29] 

Road 

Networks 

road-Luxembourg 1.15 x105 1.20 x105 1 [30] 

road-Minnesota 2.64 x103 3.30 x103 2 [31] 

road-Euroroad 1.17 x103 1.42 x103 1 [32] 

Biologic 

Networks 

PP-Pathways 2.16 x104 3.42 x105 32 [33] 

Bio-grid Human 9.53 x103 6.24 x104 4 [34] 

Bio-grid Mouse 1.46 x103 3.72 x103 13 [35] 

 

Datasets from three different applications were used for performance testing: web networks, road 

networks and biological networks. All graphs were treated as undirected and unweighted. For any detached 

graphs, additional edges were added to ensure that the graph was connected. For analysis, all graphs were 

grouped into two categories based on network size and average degree. For network size, the graphs were 

classified as small, medium, and large. Small networks were defined as graphs with less than ten-thousand 

nodes, medium networks were defined as having between ten-thousand and one hundred-thousand nodes, 

and finally, large networks contain over one hundred-thousand nodes. The graphs’ average degrees were 

grouped into 3 categories as well: low degree networks, medium degree networks, and high degree 

networks. Low degree networks are marked as having an average degree of less than 2, medium degree 

networks are marked as having an average degree between 3 and 10, and high degree networks are classified 

as having an average degree of above 10. 

5.3 Results 

5.3.1 Parallel Performance 

It is important to evaluate the parallel performance of algorithms to ensure that they can take advantage 

of available hardware. Speedup graphs offer insight to how an algorithm performs across multiple 

processors for a given dataset. To evaluate the parallel performance of Batch-iCENTRAL, it was run with 

configurations of 1, 10 and 20 cores on the different datasets mentioned in Section Datasets5.2. To evaluate 

each of the configurations accurately, the results from trials with five deletions and five insertions were 

averaged for each dataset. The results were grouped by the two graph properties discussed above. The 

grouping of various graph sizes can be seen in Figure 3, and the graphs grouped by average degree in Figure 

4. 

The graphs in Figure 3 show the results for performance, where the parallelization on large graphs is 

much better than on small graphs. All parallelization is done on affected nodes within any affected 

biconnected components, therefore in general, larger graphs have more nodes to spread amongst processors. 

With a configuration of 20 processors, the performance on a large network is about 1.5 times better than 

the performance on 10 cores. This is not ideal, but still offers a large performance boost. For the same large 

datasets, more processors would increase performance but would likely decrease the relative speedup per 
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processor. For graphs larger than the ones tested, with a million or more nodes, having more than 20 

processors would be best. The graph showing the performance on small networks shows the limitation of 

parallelizing Batch-iCENTRAL. If there are not enough affected nodes within an affected BCC, then 

processors are sitting idle waiting for others to finish. In Figure 3, it can be seen that the ideal number of 

processors for small graphs appears to be around 10 processors. As part of future work, more trials should 

be run to find the ideal number of processors for different graph sizes, split into more granular group sizes.  

 

 
Figure 3: Graphs of the average parallel speedup for Batch-iCENTRAL versus the number of processors 

used on networks of various sizes. 

 
The parallel performance of Batch-iCENTRAL grouped on networks with various average degrees are 

shown in Figure 4. The graphs do not have an evident correlation like with network size. The average degree 

does not directly impact the number of nodes available to parallelize on, however graphs with a higher 

average degree should have less biconnected components. This is not necessarily the case, but in general, 

a graph of the same size with a higher average degree should have more edges between nodes resulting in 

less BCCs and more nodes in each one. The graph with higher average degrees does appear to have a 

slightly higher speedup compared to the graphs for medium or small average degrees. This difference does 

not give conclusive evidence that the average degree impacts the parallel performance.  
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Figure 4: Graphs of the average parallel speedup for Batch-iCENTRAL versus the number of processors 

used on networks with various average degrees. 

 

5.3.2 Comparison of iCentral to Batch-iCentral 

Shukla et al. designed their batch update model to offer large performance gains when calculating 

betweenness centrality on a batch of edges. The original paper by Shukla et al. only compared their batch 

update model to iCENTRAL on batch sizes of 25, 50 and 100 [5]. From their test results, the speedup of 

the batch model versus the original iCENTRAL algorithm was large; it was measured to be 63 times faster 

on average for a batch size of 100. This paper uses the same batch sizes of 25, 50 and 100 to allow for 

comparisons on similar datasets. The results were once against grouped based on two graphs traits: the 

graph size and the average degree to see if they impact the results.  

Analysis of Figure 5 aligns with Shukla et al.’s batch update theory. The speedup of Batch-iCENTRAL 

for smaller networks is higher than on large networks for the same number of edges. This is because there 

are more edges affected per each of the biconnected components, which result in less repeated traversals 

when using Batch-iCENTRAL. For larger graphs, edges are spread out amongst more BCCs and adding 

edges sequentially results in only a few repeated traversals by iCENTRAL, lowering the speedup. If a batch 

size proportional to the number of nodes in a graph was used, likely the speedups for all datasets seen in 

Figure 5 would be similar – assuming they have similar average degrees.  
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Figure 5: Graphs comparing the speedup of Batch-iCENTRAL over iCENTRAL, for various network 

sizes, on batch sizes (BS) of 25, 50 and 100. 

The general statement that smaller graphs will have a higher speedup when using Batch-

iCENTRAL over iCENTRAL does not apply in all scenarios. In particular, the rec-Amazon and road-

Luxembourg have a much smaller speedup compared to the other datasets. This can be better explained by 

looking at the average degree for datasets in Table 1 and looking at the graphs in Figure 6. Both rec-Amazon 

and road-Luxembourg have a very low average degree of around 1, which causes the graph to have more 

BCCs. These BCCs will have less edges in each, resulting in iCENTRAL having improved performance 

with less repeated traversals. Graphs with medium to high average degrees, outlined as values from 3 to 32, 

have a much higher speedup. In general, it appears that both the graph size and the average degree of nodes 

correlate to how affective Batch-iCENTRAL is over iCENTRAL. 
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Figure 6: Graphs comparing the speedup of Batch-iCENTRAL over iCENTRAL, for graphs with 

varying average degrees, on batch sizes (BS) of 25, 50 and 100. 

Shukla et al. did not mention evaluating the performance of their algorithm on smaller batch sizes of 1, 

2, etc. [5]. To fill this gap, Batch-iCENTRAL was run with batch sizes of 1, 2, 3, and 5 and compared to 

the performance of iCENTRAL on similar batch sizes. The performance results were almost identical. The 

only significant performance difference was when multiple edges from the batch were added to the same 

biconnected component. This results in only one BFS and reverse-BFS being required with Batch-

iCENTRAL. On smaller graphs that only contain a few BCCs, 5 edges was enough to start seeing some 

performance difference, however on larger graphs, even batches with 10 edges did not result in any 

noticeable speedup of Batch-iCENTRAL over iCENTRAL. This shows that the distribution of edges over 

the BCCs is imperative for evaluating the performance gain Batch-iCENTRAL can offer. Batch-

iCENTRAL’s main downside is the increased memory requirement. The algorithm keeps all affected BCCs 

and nodes in memory at once, rather than storing one BCC and one set of affected nodes like in iCENTRAL. 

This is important to note when evaluating a small set of edges on very large graphs as the memory 

requirement is larger with negligible speedup since each edge will affect separate biconnected components.  

  



 

15 
 

5.3.3 Comparison to Literature 

The performance results collected by Shukla et al. for the speedup of their batch update compared to 

regular iCENTRAL were much larger than the results gathered when comparing Batch-iCENTRAL to 

iCENTRAL [5]. On the overlapping datasets: PP-Pathways, web-Stanford and web-NotreDame, Shukla et 

al. found a speedup of 90, 50 and 64 respectively on a batch size of 100 edges. With Batch-iCENTRAL the 

results showed the speedups to be 23.5, 18 and 15. Therefore, Batch-iCENTRAL seems to be 65-75% 

slower than the batch algorithm proposed by Shukla et al. This large discrepancy can likely be attributed to 

how the edges were inserted into the graph. If more edges are inserted into the same biconnected 

component, the speedup is larger when compared to iCENTRAL. Shukla et al. did not discuss how they 

inserted or deleted edges from the graph, however in this project all edges were randomly inserted or 

deleted. As well, the discrepancy can also be attributed to different hardware being used; Shukla et al. 

utilized hardware with 128 GB of RAM and 48 threads whereas this project uses 96 GB of RAM and 20 

processors in the largest configuration. 

6. Conclusion 

The goal of this paper was to implement and study Shukla et al.’s batch update algorithm for computing 

betweenness centrality on dynamic graphs [5]. The algorithm uses theory proposed by Jamour et al. to allow 
for updating BC values by only traversing a biconnected component rather than the entire graph [22]. As a 

result of this paper, Batch-iCENTRAL was created based on Shukla et al.’s batch update algorithm. Batch-

iCENTRAL was tested to evaluate its parallel performance and its speedup over the iCENTRAL algorithm 

that processes edges sequentially [22]. The tests to find the parallel performance and speedup were run 
against multiple graph networks as outlined in Table 1. The results were then grouped based on both graph 

size and the graph’s average degree. The results show that parallelization is much better on larger graphs 

since more nodes are available in each of the BCCs to spread amongst processors. As well, the results 
showed that the speedup of Batch-iCENTRAL over iCENTRAL is dependent on both the graph size and 

average degree of a graph. The results align with the findings made by Shukla et al. and confirm that the 

batch update algorithm’s speedup over iCENTRAL is dependent on the number of traversals needed 
through each affected BCC. Batch-iCENTRAL was not as performant as the original batch update 

algorithm designed by Shukla et al, but was able to demonstrate the advantage of batching groups of edges 

when recomputing BC in dynamic graphs.  

Future work would include evaluating the datasets shown in Table 1 on additional processor 

configurations, including configurations with more processors, to find exactly which configurations work 

best for datasets with certain properties. This evaluation would allow for less general statements and allow 

for others to estimate their expected performance. In the future, it would also be beneficial to see how 

Batch-iCENTRAL compares to the estimation algorithms outlined in Section 2.2 when recomputing 

betweenness centrality on massive graphs.  
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7. Appendix 

7.1 iCENTRAL 

Jamour et al. [22] proposed an algorithm iCENTRAL that computes updated betweenness centrality 

values after an edge insertion or deletion. Although it requires each update to be processed sequentially, 

their algorithm was a large improvement over [23]. iCentral allows for updating BC values to be computed 

incrementally by only considering the affected biconnected components, rather than the entire graph.  This 

decreases the amount of BFS and reverse-BFS required to compute BC as it is limited to only the affect 

BCC. The algorithm uses Equation (6) to sequentially remove and then add source dependencies as each 

edge is added one by one, calculating BC by using Brandes algorithms. Equation (7) below shows a more 

in-depth formula for the calculation used in the iCENTRAL algorithm. For further information on the proof 

and theorem please refer to [22].  

 
𝐵𝐶𝐺′[𝑣] = 𝐵𝐶𝐺[𝑣] − 𝐴[𝑣] + 𝐴′[𝑣] − 𝐵[𝑣] + 𝐵′[𝑣] − 𝐶[𝑣] + 𝐶′[𝑣] 

(7) 

Where: 
A[v], A’[v] is the contribution of nodes s and t that are in the affected BCC, to the source 

dependencies of v 

B[v], B’[v] is the contribution of node s that is in the affected BCC and t that is not in the affected 
BCC, to the source dependencies of v 

C[v], C’[v]  is the contribution of nodes s and t that are not in the affected BCC, to the source 

dependencies of v 

 

Full derivations and definitions of the equations for A[v], A’[v], B[v], B’[v], C[v], C’[v] can be found in 

[22]. 

 𝐴[𝑣] = ∑ 𝛿𝑠𝑡(𝑣)

𝑠,𝑡 ∈𝐵′𝑒
𝑠≠𝑡≠𝑣

     ,   𝐴′[𝑣] = ∑ 𝛿′𝑠𝑡(𝑣)

𝑠,𝑡 ∈𝐵′𝑒
𝑠≠𝑡≠𝑣

 

 

(8), (9)  

 𝐵[𝑣] = ∑ 𝛿𝑠𝑡(𝑣)

𝑠∈𝐺𝑖,𝑡 ∈𝐵′𝑒
𝑠≠𝑡≠𝑣
𝑖=1…𝑘

     ,   𝐵′[𝑣] = ∑ 𝛿′𝑠𝑡(𝑣)

𝑠∈𝐺𝑖,𝑡 ∈𝐵′𝑒
𝑠≠𝑡≠𝑣
𝑖=1…𝑘

 

 

(10), (11) 

 
𝐶[𝑣] = ∑ 𝛿𝑠𝑡(𝑣)

𝑠∈𝐺𝑖,𝑡𝑠∈𝐺𝑗

𝑠≠𝑡≠𝑣,𝑖=1…𝑘 
𝑗=1…𝑘,𝑖≠𝑗

     ,   𝐶′[𝑣] = ∑ 𝛿′𝑠𝑡(𝑣)

𝑠∈𝐺𝑖,𝑡𝑠∈𝐺𝑗

𝑠≠𝑡≠𝑣,𝑖=1…𝑘
𝑗=1…𝑘,𝑖≠𝑗

 
(12), (13) 

Where: 

 G’   is the graph constructed by added an edge e to graph G  

B’e   is the biconnected component of G’ that edge e belongs to 

a1, … , ak  are the articulation points of BCC B’e 
G1, … ,Gk  are the subgraphs of G’ connected to B’e through a1, … ,ak respectively 
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