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Introduction 

As the 21st Century progresses, humans are becoming more dependant on technology; whether that is a 

smart-phone, DNA sequencer, or even a bank machine they all lead to the creation of data. The mass 

abundance of data has led to tremendous research efforts into the fields of Data Science and Big Data. 

Through this research it has become apparent that sequential computing is insufficient for performing 

computational tasks on massive data sets. As a result, Parallel Computing has been adopted to speed-up 

the computation process. Parallel computing allows for programmers to push past the limitations of 

sequential computing, which are often restricted by hardware, by splitting sections of a large task into 

independent steps that can be executed simultaneously[1]. Parallel computing allows these 

independent steps to be run on multiple processors at the same time. Once the individual steps are 

completed the output can be interpreted by the main process, it will combine the different outputs 

defining a single solution to the large task. This paralysation will reduce the overall compute time for the 

task. Parallel computing cannot be used for all applications, particularly applications that require steps 

to be completed in a specific sequence, but where it is application users will see large gains in 

performance. 

Graphs have become an instrumental tool for modelling relationships in applications such as biological, 

social, and transportation networks. The applications mentioned, and many others, encompass massive 

data sets that require parallel computing for graph analysis within a reasonable period. One core metric 

for graph analysis is to evaluate the centrality of all nodes. Depending on the information desired 

centrality can be measured in multiple ways including degree-, closeness-, betweenness-, Eigenvector- 

centrality and many others each offering a different overview into the data [2]. In this paper, the focus 

will be solely on betweenness centrality. Betweenness centrality for a node v in a graph G can be 

defined as “the fraction of the shortest paths between all pairs of nodes that pass-through v”[3],[4]. 

Practically, betweenness centrality values in a social network measures how influential a person is in 

connecting the network around them; someone with a high value will have the most influence.  
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There are many different algorithms for calculating betweenness centrality, differing based on graph 

size and if updates are expected. This paper’s focus will be directed towards re-computing centrality in 

Dynamic graphs, graphs that changing over time by removing/adding edges. These graphs are better 

representations for real-world applications that are continuously changing. For example, in a 

transportation network routes are constantly being added/removed, or a social media network where 

people may be friending and unfriending multiple people every minute. In these scenarios algorithms 

are required to recompute existing values quickly, rather than recomputing all values again wasting long 

sections of time. The goal of this paper is to evaluate a cutting-edge parallel algorithm produced by 

Shukla et al. [5] for computing betweenness centrality on a dynamic graphs; and evaluate it’s 

performance on additional datasets to verify the massive performance gain claimed.  

Literature Review 

Betweenness centrality (BC) can be computed using many algorithms, the “best” algorithm for a certain 

case generally depends on two factors; whether the graph is expected to change and the size of it. Using 

those factors these algorithms can be grouped into three main subsections: static graphs, massive 

graphs (100s of millions to billions of nodes/edges) and dynamic graphs. This paper will briefly touch on 

the first 2 sections with a focus on state-of-the-art algorithms for dynamic graphs.  

Betweenness Centrality in Static Graphs: 

Computing the betweenness centrality for each node in a static graph is required as a preliminary step 

for most dynamic approaches. The dynamic algorithms leverage information such as: all-pairs shortest 

paths and number of shortest paths that are stored during the preliminary run to speed up the 

calculations for an update. The algorithms for static graphs are often used for comparison to see how 

much a dynamic algorithm improves performance, rather than having to recompute the values for the 

entire graph again. The fastest known algorithm for computing betweenness centrality in a static graph 

was found by Brandes [6] and has a runtime of 𝜗(|𝑉||𝐸|). Recently there have been papers [7], [8] 

trying to increase the performance of Brandes algorithm, but both papers were shown to only improve 

in some situations, theoretically the algorithms do not offer any computation advantage. Additionally 

there has been lots of work in computing betweenness centrality for static graphs in parallel, this work is 

outlined in many papers including [9], [10], [11], [12]. These parallel algorithms offer a decrease in 

computational time, with a downside of requiring a large amount of memory, so as graphs grow, they 

surpass the memory requirements of some machines. That is why approximation algorithms are used 

for massive graphs, to bypass the required memory needed for exact computations.  

Betweenness Centrality Approximation in Massive Graphs:  

Calculating the exact betweenness centrality of a graph with hundreds-of-millions to billions of nodes 

and edges is slow and can be resource intensive. To increase the speed of computation, users can 

sacrifice accuracy to get quick results using approximation algorithms. These are especially useful for 

applications where some chance of error is acceptable, but results are wanted quickly. Similar to 

calculating the exact betweenness, approximation research has been split into approximating static 

graphs and dynamic graphs. Approximating the betweenness centrality if static graph has been 

researched in depth for social networks, some key papers include [13], [14]. More recent research has 

turned toward approximating the betweenness centrality values in dynamic graphs [15], [16], [17]. The 

approximation gives an large speed up over the exact calculations for a dynamic graph. To give an 



example, Hayashi et al. [16] mentioned their algorithm can “reflect a graph change in less than a 

millisecond on an average large-scale web graph with 106M vertices and 3.7B edges”. To contrast, the 

exact algorithm by Shukla et al. [5] for a graph with 325 thousand nodes and 1.082 million edges could 

process a batch update of 25 nodes in approximately 700 seconds. 

Betweenness Centrality in Dynamic Graphs:  

Re-computing betweenness centrality for each node in a dynamic graph is a common scenario when 

modelling real-world networks. Lots of research has been done to improve processing speed, reducing 

space required to store graph information and parallelizing the algorithms. Some key papers on the 

topic include [18], [19], [20], [21], [22]; most notably the paper by Jamour et al. introduced iCENTRAL 

[22] an algorithm that offered a large speed improvement, without a large space requirement and was 

parallelizable. iCENTRAL was based on a few key concepts to reduce run time: limiting Breadth-first 

search (BFS), using Biconnected Components (BCC), as well as identifying Redundant Nodes. Shukla et al. 

[5] have improved on the iCENTRAL algorithm by introducing the concept of a batch update to address 

its main flaw of being limited to sequential updates.   

Calculating Betweenness Centrality for Dynamic Graphs 

The rest of this paper will consider a Graph G defined with a set of edges E and nodes V. Using that 

notion, in general the betweenness centrality (BC) for a node v in a graph can be defined as [6]:  

 
𝐵𝐶𝐺[𝑣] = ∑

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡𝑠,𝑡∈𝑉,
𝑠≠𝑡≠𝑣 

= ∑
𝛿𝑠𝑡(𝑣)

𝛿𝑠𝑡𝑠,𝑡∈𝑉,
𝑠≠𝑡≠𝑣 

 (1) 

Where: 
 s, t  – are also nodes in the graph G 

𝜎𝑠𝑡(𝑣)  – number of shortest paths from s to t that pass-through v 
𝜎𝑠𝑡  – the number of shortest paths from s to t   

The ideal algorithm proposed by Brandes [6] which is leveraged by dynamic graphs algorithms uses pair 
and source dependencies denoted by 𝛿𝑠𝑡(𝑣) and 𝛿𝑠•(𝑣) respectively, to calculate the betweenness 
centrality. 

 
𝛿𝑠𝑡(𝑣) =  

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡

 (2) 𝛿𝑠•(𝑣) = ∑ 𝛿𝑠𝑡(𝑣)

𝑡𝜖𝑉,𝑡≠𝑣

 
(3) 

 

 

The algorithm implements a BFS from node s to compute both 𝜎𝑠𝑤 and 𝑃𝑠(𝑤) for all nodes w∈V with 
s≠w. The second step uses a reverse-BFS to find the source dependencies, 𝛿𝑠•(𝑣), using Equation (5). 

 

 
𝛿𝑠•(𝑣) = ∑

𝜎𝑠𝑣

𝜎𝑠𝑤

∙ (1 + 𝛿𝑠•(𝑤))

𝑣𝜖𝑃𝑠(𝑤)

 (4) 

Where: 
 𝜎𝑖𝑗 - is the number of shortest paths from i to j 

 𝑃𝑠(𝑤) - is the list of parents of w in the BFS of s 
 



 

Brandes algorithms[6] allows for the computation of betweenness centrality by only performing a BFS 

and reverse-BFS, this combined with other techniques offers a large speed improvement for dynamic 

graph algorithms. Brandes also keeps properties about the BFS traversal from each node, so the 

properties do not need to be re-computed from scratch each time. The information kept with regards to 

a source node, s, includes: Ss the order of nodes visited from the source node, Ds the distance from the 

source node, 𝜎𝑠 number of paths from s and Ps the parents nodes of s. 

Biconnected Components: 

Large graphs can usually be sectioned into their biconnected components (BCC). A BCC of a graph “is a 

maximal biconnected subgraph”[22]. The BBCs within a graph are only connected by articulation points 

– a node that would disconnect the graph if removed. The BBC sections allow for the graph to be 

logically split ensuring the following claims: a node can be a part of multiple BCCs, but an edge can only 

be part of one BCC. Figure 1 below shows a graph split into different BCCs and the articulation points 

connecting them. 

 

Figure 1: Graph displaying different biconnected components (BCC), and articulation points e, h in orange. 

Biconnected components are a critical piece of dynamic BC algorithms as they limit the scope of the BFS 

required by Brandes algorithm to compute BC. Jamour et al. [22] shows that the betweenness centrality 

can be computed completely within the BCC of the affected edge, reducing the number of nodes the BFS 

must be run from drastically and offering a large speed improvement.  

Redundant Nodes: 

Identifying redundant nodes in a graph and excluding them from computation can save significant time 

as it eliminates nodes BFS is run from. Shukla et al. [5] mentions two cases of redundancy that are 

common in networks for nodes with degree 3 and degree 4. Redundancy in a node v with degree 3, 

denoted by R3, occurs when the 3 neighbours of v create a cycle of length 3 (they are all neighbours of 

each other). The same applies to redundant nodes of degree 4, denoted by R4, if the neighbours create a 

cycle of length 4 the node is redundant. An example of R3 and R4 is found below in Figure 2. 

 
𝐵𝐶𝐺 [𝑣] = ∑ 𝛿𝑠•(𝑣)

𝑠𝜖𝑉,𝑠≠𝑣

 (5) 



 

Figure 2: (a) A graph showing a R3 redundant node d, (b) A graph showing a R4 redundant node i.  

Another consideration when finding nodes affected by an edge being added/deleted is identifying if the 

shortest path has been modified. If an edge is added and it has no affect on the node’s shortest paths, 

that node is not affected. As show in [22] and [23] a node v is only affected if an edge, st, is added to the 

graph and 𝑑(𝑣, 𝑠) ≠ 𝑑(𝑣, 𝑡). 

Batch Update for Betweenness Centrality: 

 The previous approaches by [19], [22], [20], [24] to updating betweenness centrality were 

restricted to processing only one update at a time. The disadvantage to that approach is if multiple 

updates occur during a short period; it causes consecutive updates to all nodes. As well, if multiple 

updates affect a single node v, recomputing the betweenness centrality for each incremental update is 

wasteful. Equation (6) below shows the formula used by iCENTRAL[22] to update the betweenness 

centrality by removing and adding source dependencies for each added/removed edge one by one. 

Further information about the iCENTRAL algorithm can be found in the appendix. 

 𝐵𝐶𝐺′[𝑣] = 𝐵𝐶𝐺′[𝑣] − ∑ 𝛿𝑠•(𝑣)

𝑠𝜖𝑄,𝑠≠𝑣

+ ∑ 𝛿′𝑠•(𝑣)

𝑠𝜖𝑄,𝑠≠𝑣

 (6) 

Where: 

• BCG’ – updated betweenness centrality value for a node v in Graph G 

• Q – set of all nodes for where 𝛿𝑠•(𝑣)has changed after the insertion of edge e 
 

Shukla et al. [5] improved upon iCENTRAL to allow for batch updates, circumventing the disadvantage of 

current approaches and improving performance dramatically. Shukla et al. propose removing all old 

source old dependencies, then adding all new source dependencies for the entire batch of updated 

edges. Figure 1 below shows the improvements of calculating the betweenness centrality in a batch 

rather than sequentially for each edge. 

 

Figure 1: Diagram taken from Shukla et al. [5] showing their batch update approach in blue, and 

comparing it to iCENTRAL’s [22] approach of sequential updates in black. 

 



The main goal of this paper is to implement the algorithm designed by Shukla et al. [5] and test the 

performance of their batch update model on additional datasets. Additionally, their paper did not 

outline performance on a small numbers of edge updates, they only show results on batch sizes of 25 or 

more. Depending on the graph’s application it is reasonable to assume only a small number edge 

updates will come in over a period. Another goal will be to see if their algorithm is always faster than 

iCENTRAL or if there is additional overhead on small batch sizes.   

 

  



Appendix: 

iCENTRAL: 

Jamour et al. [22] proposed an algorithm iCENTRAL that computes updated betweenness centrality 

values after an edge insertion/deletion. Although it requires each update to be processed sequentially, 

their algorithm was a large improvement over [24]. iCentral allows for updating betweenness centrality 

values to be computed incrementally by only considering the affected biconnected components, rather 

than the entire graph.  This decreases the amount of BFS and reverse-BFS required to compute 

betweenness centrality as its limited to only the affect BCC. The algorithm uses equation Error! 

Reference source not found. to sequentially remove and then add source dependencies as each edge is 

added one by one, calculating betweenness centrality by using Brandes algorithms. Equation (7) below 

shows a more in-depth formula for the calculation used in the iCENTRAL algorithm. For further 

information on the proof and theorem please refer to [22].  

 
𝐵𝐶𝐺′[𝑣] = 𝐵𝐶𝐺[𝑣] − 𝐴[𝑣] + 𝐴′[𝑣] − 𝐵[𝑣] + 𝐵′[𝑣] − 𝐶[𝑣] + 𝐶′[𝑣] 

(7) 

Where: 
A[v], A’[v] – contribution of nodes s and t that are in the affected BCC, to the source 
dependencies of v 
B[v], B’[v] – contribution of node s that is in the affected BCC and t that is not in the affected 
BCC, to the source dependencies of v 
C[v], C’[v] – contribution of nodes s and t that are not in the affected BCC, to the source 
dependencies of v 

 

Full derivations and definitions of the equations for A[v], A’[v], B[v], B’[v], C[v], C’[v] can be found in [22]. 

 𝐴[𝑣] = ∑ 𝛿𝑠𝑡(𝑣)

𝑠,𝑡 ∈𝐵′𝑒
𝑠≠𝑡≠𝑣

     ,   𝐴′[𝑣] = ∑ 𝛿′𝑠𝑡(𝑣)

𝑠,𝑡 ∈𝐵′𝑒
𝑠≠𝑡≠𝑣

 

 

(8), (9)  

 𝐵[𝑣] = ∑ 𝛿𝑠𝑡(𝑣)

𝑠∈𝐺𝑖,𝑡 ∈𝐵′𝑒
𝑠≠𝑡≠𝑣
𝑖=1…𝑘

     ,   𝐵′[𝑣] = ∑ 𝛿′𝑠𝑡(𝑣)

𝑠∈𝐺𝑖,𝑡 ∈𝐵′𝑒
𝑠≠𝑡≠𝑣
𝑖=1…𝑘

 

 

(10), (11) 

 
𝐶[𝑣] = ∑ 𝛿𝑠𝑡(𝑣)

𝑠∈𝐺𝑖,𝑡𝑠∈𝐺𝑗

𝑠≠𝑡≠𝑣,𝑖=1…𝑘 
𝑗=1…𝑘,𝑖≠𝑗

     ,   𝐶′[𝑣] = ∑ 𝛿′𝑠𝑡(𝑣)

𝑠∈𝐺𝑖,𝑡𝑠∈𝐺𝑗

𝑠≠𝑡≠𝑣,𝑖=1…𝑘
𝑗=1…𝑘,𝑖≠𝑗

 
(12), (13) 

Where: 
 G’ – graph constructed by added an edge e to graph G  

B’e – biconnected component of G’ that edge e belongs to 
a1, … , ak – articulation points of BCC B’e 
G1, … ,Gk – subgraphs of G’ connected to B’e through a1, … ,ak respectively 
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